SYSTEMS ENGINEERING
Research Center

Software Intensive Systems Cost and Schedule Estimation

Final Technical Report SERC 2013-TR-032-2
June 13, 2013

Contract Number: H98230-08-D-0171 WHS TO 024; RT 6a
Report No. SERC-TR-032-2

June 13, 2013
UNCLASSIFIED

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED

13 JUN 2013 Final

4. TITLE AND SUBTITLE 5a CONTRACT NUMBER
Softwar e I ntensive Systems Cost and Schedule Estimation H98230-08-D-0171

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Boehm /Dr. Barry RT 6a

5e. TASK NUMBER
WHSTO 024

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
Stevens I nstitute Technology University of Southern California Naval NUMBER
Postgraduate School Air Force Cost Analysis Agency SERC-TR-032-2

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

DASD (SE), DoD, AIRFORCE 11. SPONSOR/MONITOR' S REPORT

NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Thisisthe 2nd of two reportsthat were created for research on thistopic funded through SERC.
SERC-TR-2013-032-2 (current report), included the " Software Cost Estimation MetricsManual." This
constitutesthe 2012-2013 Final Technical Report of the SERC Research Task Order 0024, RT-6: Software
Intensive Systems Cost and Schedule Estimation. Estimating the cost to develop a softwar e application is
different from almost any other manufacturing process. In other manufacturing disciplines, the product is
developed once and replicated many times using physical processes. Replication improves physical process
productivity (duplicate machines produce moreitemsfaster), reduces learning curve effects on people and
spreads unit cost over many items. Wher eas a softwar e application is a single production item, i.e. every
application isunique. The only physical processes ar e the documentation of ideas, their tranglation into
computer instructions and their validation and verification. Production productivity reduces, not increases,
when mor e people are employed to develop the softwar e application. Savingsthrough replication are only
realized in the development processes and on the lear ning curve effects on the management and technical
staff. Unit cost isnot reduced by creating the softwar e application over and over again.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a NAME OF
OF ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE U U 142

unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

UNCLASSIFIED

Copyright © 2013 Stevens Institute of Technology, Systems Engineering Research Center

This material was based upon work supported by the Air Force Cost Analysis Agency (AFCAA)
and funded, in part, through the U.S. Department of Defense through the Systems Engineering
Research Center (SERC) under Contract H98230-08-D-0171. The SERC is a federally funded
University Affiliated Research Center (UARC) managed by Stevens Institute of Technology
consisting of a collaborative network of over 20 universities (more information is available at
www.SERCuarc.org). This work was also funded, in part, through RFQ 663074, US Army
Contracting Command, Joint Munitions & Lethality Center, Joint Armaments Center, Picatinny
Arsenal, NJ.

Analysis based on data from the DoD Software Resource Data Report.

Any opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the United States Department
of Defense.

NO WARRANTY

THIS STEVENS INSTITUTE OF TECHNOLOGY AND SYSTEMS ENGINEERING RESEARCH
CENTER MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. STEVENS INSTITUTE OF
TECHNOLOGY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. STEVENS INSTITUTE OF TECHNOLOGY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as
restricted below.

Internal use by SERC, SERC Collaborators and originators :* Permission to reproduce this
material and to prepare derivative works from this material for internal use is granted,
provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

External use:*

Academic Use: This material may be reproduced in its entirety, without modification, and
freely distributed in written or electronic form without requesting formal permission, provided
the copyright and “No Warranty” statements are included with all reproductions.

Permission is required for any other external and/or commercial use. Requests for permission
should be directed to the Systems Engineering Research Center at dschultz@stevens.edu

* These restrictions do not apply to U.S. government entities.

Contract Number: H98230-08-D-0171 WHS TO 024; RT 6a
Report No. SERC-TR-032-2
June 13, 2013
i

UNCLASSIFIED

SUMMARY

This is the 2nd of two reports that were created for research on this topic funded through SERC.

The first report, SERC-TR-032-1 dated March 13, 2012, constituted the 2011-2012 Annual
Technical Report and the Final Technical Report of the SERC Research Task RT-6: Software
Intensive Systems Data Quality and Estimation Research In Support of Future Defense Cost
Analysis.

The overall objectives of RT-6 were to use data submitted to DoD in the Software Resources
Data Report (SRDR) forms to provide guidance for DoD projects in estimating software costs for
future DoD projects. In analyzing the data, the project found variances in productivity data that
made such SRDR-based estimates highly variable. The project then performed additional
analyses that provided better bases of estimate, but also identified ambiguities in the SRDR data
definitions that enabled the project to help the DoD DCARC organization to develop better
SRDR data definitions.

In SERC-TR-2012-032-1, the resulting Manual provided the guidance elements for software cost
estimation performers and users. Several appendices provide further related information on
acronyms, sizing, nomograms, work breakdown structures, and references.

SERC-TR-2013-032-2 (current report), included the “Software Cost Estimation Metrics Manual.”
This constitutes the 2012-2013 Annual Technical Report and the Final Technical Report of the
SERC Research Task Order 0024, RT-6: Software Intensive Systems Cost and Schedule
Estimation

Estimating the cost to develop a software application is different from almost any other
manufacturing process. In other manufacturing disciplines, the product is developed once and
replicated many times using physical processes. Replication improves physical process
productivity (duplicate machines produce more items faster), reduces learning curve effects on
people and spreads unit cost over many items.

Whereas a software application is a single production item, i.e. every application is unique. The
only physical processes are the documentation of ideas, their translation into computer
instructions and their validation and verification. Production productivity reduces, not
increases, when more people are employed to develop the software application. Savings
through replication are only realized in the development processes and on the learning curve
effects on the management and technical staff. Unit cost is not reduced by creating the software
application over and over again.

Contract Number: H98230-08-D-0171 WHS TO 024; RT 6a
Report No. SERC-TR-032-2 - June 13, 2013
iii

UNCLASSIFIED

This manual helps analysts and decision makers develop accurate, easy and quick software cost
estimates for different operating environments such as ground, shipboard, air and space. It was
developed by the Air Force Cost Analysis Agency (AFCAA) in conjunction with DoD Service
Cost Agencies, and assisted by the SERC through involving the University of Southern
California and the Naval Postgraduate School. The intent is to improve quality and consistency
of estimating methods across cost agencies and program offices through guidance,
standardization, and knowledge sharing.

The manual consists of chapters on metric definitions, e.g., what is meant by equivalent lines of
code, examples of metric definitions from commercially available cost models, the data
collection and repository form, guidelines for preparing the data for analysis, analysis results,
cost estimating relationships found in the data, productivity benchmarks, future cost estimation
challenges and a very large appendix.

Contract Number: H98230-08-D-0171 WHS TO 024; RT 6a
Report No. SERC-TR-032-2 - June 13, 2013
iii

UNCLASSIFIED
Software Cost Estimation Metrics Manual

Software Cost
Estimation Metrics
Manual

Analysis based on data from the DoD Software
Resource Data Report

This manual describes a method that takes software cost metrics data and
creates cost estimating relationship models. Definitions of the data used in the
methodology are discussed. The cost data definitions of other popular Software
Cost Estimation Models are also discussed. The data collected from DoD’s
Software Resource Data Report are explained. The steps for preparing the data
for analysis are described. The results of the data analysis are presented for
different Operating Environments and Productivity Types. The manual wraps
up with a look at modern estimating challenges.

UNCLASSIFIED
Distribution Statement A: Approved for public release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

Contents
T INETOAUCHION ceetiticcc ettt ettt sttt ettt b bbb et et enes 1
2 MetricS DefiNitioNS......coueeueiiieieiriieieeert ettt ettt st ettt be e 2
2.1 SIZE MEASULIEScvinviiiniiiiiieieeeieet ettt ettt st a ettt st a b 2
2.2 Source Lines of COde (SLOQC) ...iiimimimiiiieieieiriesiestesiestetete ettt see et esessessessessenean 2
221 SLOC Type Definitions........ccccceiviiuiiiiiiiiiiiiiiiiiniciiccscsseses s 2
222 SLOC Counting RUIeS..........coueiiiiiiiiiiiciccc s 3
2221 LOGICal LINES ...ocuvieiiiiiiiiiiccc s 3
2222 Physical LINescccociiiiiiiiiiiiiiiiiic s 4
2.2.2.3 TOtAl LINES...ciuiieiiiiiiieiiiiieiciicertette ettt ettt 4
2.2.24 Non-Commented Source Statements (INCSS)cccoeveverienieiinienineneneneseieeeeeens 4
2.3 EqQUiValent SiZe ... 5
2.3.1 Definition and Purpose in EStimating..........ccccoeuvevveinininiiiniiiiieeeecccccccccccc 5
2.3.2 Adapted SLOC Adjustment FactOrsScceeiviriiiiiininiiiiniicineccceecceeeeeeeeeeeaeas 6
2.3.3 Total EQUIvalent SizZecccccviiiiiiiiiiiiiiiiiiici e 7
234 VOLatlItY c.ooviiiiiiiciiccc e 7
2.4 Development EffOrt ... 7
2.4.1 Activities and Lifecycle Phases...........cooiiiiiiniiiiiiccc 7
2.4.2 Labor CateGOTries.ccuouiuiuiiriiiiiiiiieieiieicieteee ettt 8
2:4.3 LabOr HOUTS ..ottt 9
2.5 SCREAUIE ..ttt 9
3 Cost Estimation MOAEISc.coueiririririiiiicicieieeres sttt 10
3.1 EffOrt FOIMUIA «..co.ooviiiii ettt ettt 10
3.2 COSEMOUAEIS .ottt ettt 10
321 COCOMO I ..ottt ettt sttt sttt be s 11
322 SEER-SEM ...ttt ettt ettt ettt sttt 12
B.2.3 SLIM ettt b ettt b et b et bt ne et ne et eae e 12
B.2/4 TIUES ettt sttt ettt ettt sttt 13
3.3 Model COMPATISONS.....cciviuimiiiiiiiiiiiiiice et 13
3.3.1 SIZe INPULS ...oviiiiiiiciic s 13
3.3. 1.1 COCOMO L.ttt ettt ettt ettt ettt be e 14
3.3.1.2 SEER-SEM ...uiiiiiieiiieiee ettt ettt ettt 14
8313 TIUE S ettt ettt ettt ettt b et 16
B.3. 114 SLIM ettt ettt ettt 19
3.3.2 Lifecycles, Activities and Cost Categoriescoceveivirurieininiieininiieiieeeeeeeeeee 19
4 Software Resource Data Report (SRDR)cccceceuiiiiiiiiiiiniiiiiiiiciiiccciecceeeeecnnes 23

UNCLASSIFIED
Distribution Statement A: Approved for public release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

41 DCARC REPOSItOIY ...coiuiiiiiiiiiiiiiiciiiicicccc e 23
42 SRDR Reporting FreqUeNCy ... 24
4.3 SRDR CONtONt....ccoiiiiiiiiiitiiiiecee b 25
4.3.1 Administrative Information (SRDR Section 3.1).......ccccceveriremenenenerieineneneneneeeenes 25
43.2 Product and Development Description (SRDR Section 3.2).........ccccoevrveieieieiiieiercnnnnen. 26
4.3.3 Product Size Reporting (SRDR Section 3.3)ccccceeiviiiniiiniiiciiiiciicccecces 27
4.3.4 Resource and Schedule Reporting (SRDR Section 3.4)ccccceuvuiiviniiiinniiiininnennnn. 28
4.3.5 Product Quality Reporting (SRDR Section 3.5 - Optional).......c.cccccceuvuriininiiicinnnnnnne. 28
4.3.6 Data DictiONary ..o s 29
5 Data Assessment and Processing............coceeueveveuiieieiciciciciccccccc s 30
5.1 WOTKEIOW ..o 30
5.1.1 Gather Collected Data..........ccceueuiuiiiiiiiiiiiiiic s 30
5.1.2 Inspect each Data POINtccccooiiiiiiiiiiiiiiiiiiiiiicciic e 31
5.1.3 Determine Data Quality Levels..........ccccccviniiiiiiniiiiiniiiiiiiicccce, 33
5.1.4 Correct Missing or Questionable Dataccccoeovoveieiiiniiiiiniiicc 34
5.1.5 Normalize Size and Effort Data...........cccccocooiiiiiniii 34
5.1.5.1 Converting to Logical SLOC.........cccceoimriiiiiniiciiicceccreeeeeee e 34
5.1.5.2 Convert Raw SLOC into Equivalent SLOCccccccouriiivininiiiiniiiiiiccinne, 37
5.1.5.3 Adjust for Missing Effort Data..........ccccoeiiviiiiiiiniiiiiiiicccce 39
52 Data Segmentation..........ccccoiviiiiiiiiiiiiiiiccc 39
5.2.1 Operating Environments (OpENV)........cccccooiiiiiiiiiiii 40
5.2.2 Productivity TYPes (PT)ccccooiiiiiiiiiiiiiiiiiiiciicc s 41
52.2.1 Finding the Productivity TYPecccceciviviiiininiiiiiiiiiicinccciccccecee 44
6 Cost Estimating Relationship ANalysis........c.ccccceoiviiiiiiniiiiiniiiiiiccicceecnes 46
6.1 Application Domain DecompoSition..........ccccouvuiuiiiiiiiiiiiniiiiiiiciiicne 46
6.2 SRDR Metric Definitions......ccccevuiiriiiriiiniiiiicinicicieceeectceteeere et 46
0.2.1 SOftWATE SIZE......cooiiiiiiiiiii s 46
6.2.2 Software Development Activities and Durations............cccccccviiinniiiniiinninccne, 46
6.3 Cost Estimating Relationships (CER).........ccccceiiiiiiiiiiniiiiiiiiiiicccccccnes 48
6.3.1 Model Selectioncoeuiiiiiiiiiiii s 48
6.3.2 Model-Based CERS COVETAEcceueveueuricicicieiecccccc s 49
6.3.3 Software CERS by OPENVccccoiviiiiiiiiiiiiceeeeeeeee e 50
6.3.3.1 Ground Site (GS) Operating Environmentccccoeviviiniiniininniiiciiins 50
6.3.3.2 Ground Vehicle (GV) Operating Environment.............ccccocecevvnniinnnccnnncnnne. 51
6.3.3.3 Aerial Vehicle (AV) Operating Environment............ccccccoovviivnniinnnicnnnicne, 52
6.3.3.4 Space Vehicle Unmanned (SVU) Operating Environmentccccceevevninnnnnnne. 53
6.3.4 Software CERs by PT Across All Environments..........cccocoeveveieieieiiieieeicccccccccne 53
UNCLASSIFIED

Distribution Statement A: Approved for public release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

6.4 Productivity Benchmarks..........ccccoiiiiiiiiiiiiiiiiiis 56
6.4.1 Model Selection and COVETage..........cccouvuiuiiririiuiiniiiiiiiccee s 56
6.4.2 Data Transformation..........ccceevieieiiiininiiniiiieiicceeeee ettt 57
6.4.3 Productivity Benchmark Statistics ... 58
6.4.4 Software Productivity Benchmark Results by Operating Environment 58
6.4.5 Software Productivity Benchmarks Results by Productivity Type........ccccccceevrurueuencne. 59
6.4.6 Software Productivity Benchmarks by OpEnv and PT........ccccccccocviiinniinnninnne. 61

0.5 Future WorK ... 61

7 Modern Estimation Challenges.............cccccoooiviiiininiiiiiiiii s 62

7.1 Changing Objectives, Constraints and Priorities...........ccoeveeviininnininneeeececee 62
7.1.1 Rapid Change, Emergent Requirements, and Evolutionary Development................ 62
7.1.2 Net-centric Systems of Systems (NCSO0S).........ccccecuviriininniinniiiiiiccee 65
7.1.3 Model-Driven and Non-Developmental Item (NDI)-Intensive Development........... 65
7.1.4 Ultrahigh Software Systems ASSUTANCeccoveiiiinininiiininieiee s 66
7.1.5 Legacy Maintenance and Brownfield Development............ccccocooevniiiiiiiiiiinnnns 67
7.1.6 Agile and Kanban Development.............ccccoiiiiiiiiiiiceccs 68
7.1.7 Putting It All Together at the Large-Project or Enterprise Level..........cccccccccocvnnennene. 68

7.2 Estimation Approaches for Different Processesccccccoviiininiiiiiniicinninciiinne, 69

8 Conclusions and NeXt STEPSccviviiiiiiiniiiiiiiii s 73
O APPENAICES ... s 74

9.1 ACTONYIMIS oottt et 74

9.2 Automated Code COUNtINGccoouvviiiiiiiiiiiiicc s 79

9.3 Additional Adapted SLOC Adjustment Factors..........cccccocceeinireininnccnnneinecccrenes 79
9.3.1 EXAMPIES...ooiiiiiiiiiiiiccc e 81

9.3.1.1 Example: New SOftWare.........cccccviiiiiiiiiiiiiiiiniiciiccce s 81
9.3.1.2 Example: Modified SOftWarecccoueveveieieicicicccccc e 81
9.3.1.3 Example: Upgrade to Legacy System...........cccceririiiiiiininieeeeeee 81

9.4 SRDR Data RepOrt.......cccoiviiiiiiiiiiiiiiiiiiciiciic e 82
9.4.1 Proposed Modifications...........cccoueuiuiiiiiiiiiiiiiiiiiiiccii e 86

9.5 MIL-STD-881C WBS Mapping to Productivity Types.........cccccoeiviviiinnniininiiciinnns 88
9.5.1 Aerial Vehicle Manned (AVM)........cccoviiiiiniiiiicen s 88
9.5.2 Ordinance Vehicle Unmanned (OVU)cccccoviiiiiininininiiiiccccccccccccene 90
9.5.3 Ordinance Vehicle Unmanned (OVU)cccccoviiiiiininininininiiiicccccccccccnes 92
9.5.4 Maritime Vessel Manned (MVM) ... 93
9.5.5 Space Vehicle Manned / Unmanned (SVM/U) and Ground Site Fixed (GSF)............ 94
9.5.6 Ground Vehicle Manned and Unmanned (GVM/U).........ccccoevivniiiinniniinninccnnnn. 95
9.5.7 Aerial Vehicle Unmanned(AVU) & Ground Site Fixed (GSF)........ccccccevviniiiiininnnee. 97

UNCLASSIFIED

Distribution Statement A: Approved for public release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

9.5.8 Maritime Vessel Unmanned (MVU) and Maritime Vessel Manned (MVM).............. 98
9.5.9 Ordinance Vehicle Unmanned (OVU)cc.coeveriiriiininininenenieneieeeteeeieeie e 99
9.5.10 Ground Site FIXed (GSF)......coeririiiieieirininieseeteteteeseste ettt ettt 100
9.5.11 Applies to ALL ENVIronments...........ccccccvviriiuiininiiiininiiiiiiccccsseesssseecnnens 100
9.6 Productivity (Pr) Benchmark Detailsccccoeiiiiiiiiniiiiiiccs 101
9.6.1 Normality Tests on Productivity Datacccccceueiinniiiiniiiincicccceecen 101
9.6.1.1 Operating Environments (all Productivity Types)........ccccccevvriiiniiinnnncnnnne. 101
9.6.1.2 Productivity Types (all Operating Environments)...........cccccccevveiviniiinnnccnnne. 102
9.6.1.3 Operating Environment — Productivity Type Setscccoevviiviniiiinnnnnnn. 102
9.6.2 Statistical Summaries on Productivity Data.........cccccooveveieiiiiiiii 102
9.6.2.1 Operating ENvironments...........ccccoooiiiiiiiiiiiiiiicc s 103
9.6.2.2 Productivity TYPeS.....ccceiviiiiiiiiiiiiiiiicicicc s 108
9.6.2.3 Operating Environment - Productivity Type Sets.........ccccccecvviinniiinnncnnne. 114

0.7 REfEIENCES....c.oiiiiiiiiiiiicc e 129

Acknowledgements

The research and production of this manual was supported by the Systems Engineering
Research Center (SERC) under Contract H98230-08-D-0171 and the US Army Contracting
Command, Joint Munitions & Lethality Center, Joint Armaments Center, Picatinny Arsenal, NJ,
under RFQ 663074.

Many people worked to make this manual possible. The contributing authors were:

Cheryl Jones, US Army Armament Research Development and Engineering Center
(ARDEC)

John McGarry, ARDEC

Joseph Dean, Air Force Cost Analysis Agency (AFCAA)
Wilson Rosa, AFCAA

Ray Madachy, Naval Post Graduate School

Barry Boehm, University of Southern California (USC)
Brad Clark, USC

Thomas Tan, USC

UNCLASSIFIED
Distribution Statement A: Approved for public release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

Software Cost Estimation
Metrics Manual

Analysis based on data from the DoD Software Resource Data Report

1 Introduction

Estimating the cost to develop a software application is different from almost any other
manufacturing process. In other manufacturing disciplines, the product is developed once and
replicated many times using physical processes. Replication
improves physical process productivity (duplicate machines
produce more items faster), reduces learning curve effects on

Software Cost

people and spreads unit cost over many items. I .
Estimation

Whereas a software application is a single production item, i.e.
every application is unique. The only physical processes are oo
the documentation of ideas, their translation into computer

There is no good way

instructions and their validation and verification. Production to perform a software

productivity reduces, not increases, when more people are cost-benefit analysis,

employed to develop the software application. Savings breakeven analysis, or

through replication are only realized in the development make-or-buy analysis
processes and on the learning curve effects on the
management and technical staff. Unit cost is not reduced by

creating the software application over and over again.

without some
reasonably accurate
method of estimating

This manual helps analysts and decision makers develop software costs and
accurate, easy and quick software cost estimates for different their sensitivity to
operating environments such as ground, shipboard, air and various product,
space. It was developed by the Air Force Cost Analysis project, and

Agency (AFCAA) in conjunction with DoD Service Cost environmental factors.

Agencies, and assisted by the University of Southern
California and the Naval Postgraduate School. The intent is to
improve quality and consistency of estimating methods across

-Barry Boehm

cost agencies and program offices through guidance,
standardization, and knowledge sharing.

The manual consists of chapters on metric definitions, e.g., what is meant by equivalent lines of
code, examples of metric definitions from commercially available cost models, the data
collection and repository form, guidelines for preparing the data for analysis, analysis results,
cost estimating relationships found in the data, productivity benchmarks, future cost estimation
challenges and a very large appendix

Introduction ¢ 1
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

2 Metrics Definitions

2.1 Size Measures

This chapter defines software product size measures used in Cost Estimating Relationship
(CER) analysis. The definitions in this chapter should be compared to the commercial cost
model definitions in the next chapter. This will help understand why estimates may vary
between these analysis results in this manual and other model results.

For estimation and productivity analysis, it is necessary to have consistent measurement
definitions. Consistent definitions must be used across models to permit meaningful
distinctions and useful insights for project management.

2.2 Source Lines of Code (SLOC)

An accurate size estimate is the most important input to parametric cost models. However,
determining size can be challenging. Projects may be composed of new code, code adapted
from other sources with or without modifications, and automatically generated or translated
code.

The common measure of software size used in this manual is Source Lines of Code (SLOC).
SLOC are logical source statements consisting of data declarations and executables. Different
types of SLOC counts will be discussed later.

2.2.1 SLOC Type Definitions

The core software size type definitions used throughout this manual are summarized in Table 1
below. These definitions apply to size estimation, data collection, and analysis. Some of the size
terms have different interpretations in the different cost models as described in Chapter 3.

Table 1 Software Size Types

Size Type Description
New Original software created for the first time.
Adapted Pre-existing software that is used as-is (Reused) or changed (Modified).

Pre-existing software that is not changed with the adaption parameter
settings:

Reused Design Modification % (DM) = 0%
Code Modification % (CM) = 0%
Pre-existing software that is modified for use by making design, code
- and / or test changes:
Modified

Design Modification % (DM) >= 0%
Code Modification % (CM) > 0%

A relative measure of the work done to produce software compared to
Equivalent the code-counted size of the delivered software. It adjusts the size of
adapted software relative to developing it all new.

Metrics Definitions ® 2
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

Table 1 Software Size Types

Size Type Description
Software created with automated source code generators. The code to
Generated include for equivalent size consists of automated tool generated
statements.
Software that is converted between languages using automated
Converted

translators.

Pre-built commercially available software components. The source code
is not available to application developers. It is not included for
Commercial Off-The- equivalent size.
Shelf Software (COTS) Other unmodified software not included in equivalent size are
Government Furnished Software (GFS), libraries, operating systems and
utilities.

The size types are applied at the source code file level for the appropriate system-of-interest. If a
component, or module, has just a few lines of code changed then the entire component is
classified as Modified even though most of the lines remain unchanged. The total product size
for the component will include all lines.

Open source software is handled, as with other categories of software, depending on the context
of its usage. If it is not touched at all by the development team it can be treated as a form of
COTS or reused code. However, when open source is modified it must be quantified with the
adaptation parameters for modified code and be added to the equivalent size. The costs of
integrating open source with other software components should be added into overall project
costs.

2.2.2 SLOC Counting Rules

2.2.2.1 Logical Lines

The common measure of software size used in this manual and the cost models is Source Lines
of Code (SLOC). SLOC are logical source statements consisting of data declarations and
executables. Table 2 shows the SLOC definition inclusion rules for what to count. Based on the
Software Engineering Institute (SEI) checklist method [Park 1992, Goethert et al. 1992], each
checkmark in the “Includes” column identifies a particular statement type or attribute included
in the definition, and vice-versa for the “Excludes”.

Metrics Definitions * 3
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

Table 2 Equivalent SLOC Rules for Development

Includes Excludes
Statement Type
Executable v
Nonexecutable
Declarations v
Compiler directives v
Comments and blank lines v
How Produced
Programmed New v
Reused v
Modified v
Generated
Generator statements v
3GL generated statements / . d
(development) (maintenance)
Converted v
Origin
New v
Adapted
A previous version, build, or release v
Unmodified COTS, GFS, library, operating system or utility v

Unfortunately, not all SLOC counts are reported using a logical count type. There are other
SLOC count types. These are discussed next.

2.2.2.2 Physical Lines

The Physical SLOC count type is a count type where programming language terminators or
delimiters are counted. This count type excludes blank lines in a source code file and includes
everything else.

2.2.2.3 Total Lines

The Total SLOC count type includes a count of everything, including blank lines.

2.2.2.4 Non-Commented Source Statements (NCSS)

The Non-Commented Source Statement count type only counts lines containing a programming
language source statement. No blank lines or comment-only lines are counted.

To prevent confusion in reporting measures of size and in storing results in databases, the type
of SLOC count should always be recorded.

Metrics Definitions * 4
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

2.3 Equivalent Size

A key element in using software size for effort estimation is the concept of equivalent size.
Equivalent size is a quantification of the effort required to use previously existing code along
with new code. The challenge is normalizing the effort required to work on previously existing
code to the effort required to create new code. For cost estimating relationships, the size of
previously existing code does not require the same effort as the effort to develop new code.

The guidelines in this section will help the estimator in determining the total equivalent size. All
of the models discussed in Chapter 3 have tools for doing this. However, for non-traditional
size categories (e.g., a model may not provide inputs for auto-generated code), this manual will
help the estimator calculate equivalent size outside of the tool and incorporate the size as part of
the total equivalent size.

2.3.1 Definition and Purpose in Estimating

The size of reused and modified code is adjusted to be its equivalent in new code for use in
estimation models. The adjusted code size is called Equivalent Source Lines of Code (ESLOC).
The adjustment is based on the additional effort it takes to modify the code for inclusion in the
product taking into account the amount of design, code and testing that was changed and is
described in the next section.

In addition to newly developed software, adapted software that is modified and reused from
another source and used in the product under development also contributes to the product's
equivalent size. A method is used to make new and adapted code equivalent so they can be
rolled up into an aggregate size estimate.

There are also different ways to produce software that complicate deriving ESLOC including
generated and converted software. All of the categories are aggregated for equivalent size. A
primary source for the equivalent sizing principles in this section is Chapter 9 of [Stutzke 2005].

For usual Third Generation Language (3GL) software such as C or Java, count the logical 3GL
statements. For Model-Driven Development (MDD), Very High Level Languages (VHLL), or

macro-based development, count the generated statements A summary of what to include or

exclude in ESLOC for estimation purposes is in the table below.

Metrics Definitions ¢ 5
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

Table 3 Equivalent SLOC Rules for Development

Source Includes Excludes
New v
Reused v
Modified v
Generated

Generator statements v

3GL generated statements v
Converted
COTS v
Volatility v

2.3.2 Adapted SLOC Adjustment Factors

The AAF factor is applied to the size of the adapted software to get its equivalent size. The cost
models have different weighting percentages as identified in the Chapter 3.

The normal Adaptation Adjustment Factor (AAF) is computed as:
Eql AAF = (0.4 x DM) + (0.3 x CM) + (0.3 x IM)
Where

% Design Modified (DM)

The percentage of the adapted software’s design which is modified in order to adapt it to the
new objectives and environment. This can be a measure of design elements changed such as
UML descriptions.

% Code Modified (CM)

The percentage of the adapted software’s code which is modified in order to adapt it to the new
objectives and environment.

Code counting tools can be used to measure CM. See the chapter on the Unified Code Count
tool in Appendix 9.2 for its capabilities, sample output and access to it.

% Integration Required (IM)

The percentage of effort required to integrate the adapted software into an overall product and
to test the resulting product as compared to the normal amount of integration and test effort for
software of comparable size.

Reused software has DM = CM = 0. IM is not applied to the total size of the reused software, but
to the size of the other software directly interacting with it. It is frequently estimated using a
percentage. Modified software has CM > 0.

Metrics Definitions * 6
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

2.3.3 Total Equivalent Size
Using the AAF to adjust Adapted Code size, the total equivalent size is:
Eq 2 Total Equivalent Size = New Size + (AAF x Adapted Size)

AAF assumes a linear effort relationship, but there can also be nonlinear effects. Data indicates
that the AAF factor tends to underestimate modification effort [Selby 1988], [Boehm et al. 2001],
[Stutzke 2005]. Two other factors used to account for these effects are Software Understanding
and Programmer Unfamiliarity. These two factors and their usage are discussed in Appendix
9.2

2.3.4 Volatility

Volatility is requirements evolution and change, but not code thrown out. To account for the
added effort, volatility is expressed as an additional percentage to size to obtain the total
equivalent size for estimation.

Eq3 Total Equivalent Size = [New Size + (AAF x Adapted Size)] x (1 + Volitility)

2.4 Development Effort

2.4.1 Activities and Lifecycle Phases

Software development involves much more activity than just coding. It includes the work
involved in developing requirements, designs and tests. It involves documentation and reviews,
configuration management, and quality assurance. It can be done using different life cycles (see
discussion in Chapter 7.2.) and different ways of organizing the work (matrix, product lines,
etc.). Using the DoD Software Resource Data Report as the basis, the following work
activities/phases are included or excluded for effort.

Table 4 Effort Activities and Phases

Activity Includes Excludes
System Conceptualization v
Systems Requirements Development v

Software Requirements Analysis

Software Architecture and Detailed Design

Software Coding and Unit Test

Software Integration and System / Software Integration

Hardware / Software Integration and Test

System Test and Evaluation

Operational Test and Evaluation

NAYAYA

Production

Metrics Definitions ® 7
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

Phase Includes Excludes
Inception v

Elaboration v

Construction v

Transition v

Software requirements analysis includes any prototyping activities. The excluded activities are
normally supported by software personnel but are considered outside the scope of their
responsibility for effort measurement. Systems Requirements Development includes equations
engineering (for derived requirements) and allocation to hardware and software.

All these activities include the effort involved in documenting, reviewing and managing the
work-in-process. These include any prototyping and the conduct of demonstrations during the
development.

Transition to operations and operations and support activities are not addressed by these
analyses for the following reasons:

e They are normally accomplished by different organizations or teams.
e They are separately funded using different categories of money within the DoD.
e The cost data collected by projects therefore does not include them within their scope.

From a life cycle point-of-view, the activities comprising the software life cycle are represented
for new, adapted, reused, generated and COTS (Commercial Off-The-Shelf) developments.
Reconciling the effort associated with the activities in the Work Breakdown Structure (WBS)
across life cycle is necessary for valid comparisons to be made between results from cost
models.

2.4.2 Labor Categories

The labor categories included or excluded from effort measurement is another source of
variation. The categories consist of various functional job positions on a project. Most software
projects have staff fulfilling the functions of:

e Project Managers

e Application Analysts

¢ Implementation Designers

e Programmers

e Testers

¢ Quality Assurance personnel
e Configuration Management personnel
e Librarians

e Database Administrators

e Documentation Specialists

e Training personnel

e Other support staff

Metrics Definitions ¢ 8
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

Adding to the complexity of measuring what is included in effort data is that staff could be
fulltime or part time and charge their hours as direct or indirect labor. The issue of capturing
overtime is also a confounding factor in data capture.

2.4.3 Labor Hours

Labor hours (or Staff Hours) is the best form of measuring software development effort. This
measure can be transformed into Labor Weeks, Labor Months and Labor Years. For modeling
purposes, when weeks, months or years is required, choose a standard and use it consistently,
e.g. 152 labor hours in a labor month.

If data is reported in units other than hours, additional information is required to ensure the
data is normalized. Each reporting Organization may use different amounts of hours in
defining a labor week, month or year. For whatever unit being reported, be sure to also record
the Organization’s definition for hours in a week, month or year. See [Goethert et a 1992] for a
more detailed discussion.

2.5 Schedule

Schedule data are the start and end date for different development phases, such as those discuss
in 2.4.1. Another important aspect of schedule data is entry or start and exit or completion
criteria each phase. The criteria could vary between projects depending on its definition. As an
example of exit or completion criteria, are the dates reported when:

¢ Internal reviews are complete

e Formal review with the customer is complete

e Sign-off by the customer

e All high-priority actions items are closed

e All action items are closed

e Products of the activity / phase are placed under configuration management
e Inspection of the products are signed-off by QA

e Management sign-off

An in-depth discussion is provided in [Goethert et al 1992].

Metrics Definitions * 9
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

3 Cost Estimation Models

In Chapter 2 metric definitions were discussed for sizing software, effort and schedule. Cost
estimation models widely used on DoD projects are overviewed in this section. It describes the
parametric software cost estimation model formulas (the one that have been published), size
inputs, lifecycle phases, labor categories, and how they relate to the standard metrics
definitions. The models include COCOMO, SEER-SEM, SLIM, and True S. The similarities and
differences for the cost model inputs (size, cost factors) and outputs (phases, activities) are
identified for comparison.

3.1 Effort Formula

Parametric cost models used in avionics, space, ground, and shipboard platforms by the
services are generally based on the common effort formula shown below. Size of the software is
provided in a number of available units, cost factors describe the overall environment and
calibrations may take the form of coefficients adjusted for actual data or other types of factors
that account for domain-specific attributes [Lum et al. 2001] [Madachy-Boehm 2008]. The total
effort is calculated and then decomposed by phases or activities according to different schemes
in the models.

Eq 4 Effort = A x Size® x C
Where

e [Effortis in person-months

e A is a calibrated constant

e Bis a size scale factor

e (is an additional set of factors that influence effort.

The popular parametric cost models in widespread use today allow size to be expressed as lines
of code, function points, object-oriented metrics and other measures. Each model has its own
respective cost factors and multipliers for EAF, and each model specifies the B scale factor in
slightly different ways (either directly or through other factors). Some models use project type
or application domain to improve estimating accuracy. Others use alternative mathematical
formulas to compute their estimates. A comparative analysis of the cost models is provided
next, including their sizing, WBS phases and activities.

3.2 Cost Models

The models covered include COCOMO II, SEER-SEM, SLIM, and True S. They were selected
because they are the most frequently used models for estimating DoD software effort, cost and
schedule. A comparison of the COCOMO II, SEER-SEM and True S models for NASA projects is
described in [Madachy-Boehm 2008]. A previous study at JPL analyzed the same three models
with respect to some of their flight and ground projects [Lum et al. 2001]. The consensus of
these studies is any of the models can be used effectively if it is calibrated properly. Each of the
models has strengths and each has weaknesses. For this reason, the studies recommend using at

Cost Estimation Models ¢ 10
UNCLASSIFIED

Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

least two models to estimate costs whenever it is possible to provide added assurance that you
are within an acceptable range of variation.

Other industry cost models such as SLIM, Checkpoint and Estimacs have not been as frequently
used for defense applications as they are more oriented towards business applications per
[Madachy-Boehm 2008]. A previous comparative survey of software cost models can also be
found in [Boehm et al. 2000b]. COCOMO 1l is a public domain model that USC continually
updates and is implemented in several commercial tools. True S and SEER-SEM are both
proprietary commercial tools with unique features but also share some aspects with COCOMO.
All three have been extensively used and tailored for flight project domains. SLIM is another
parametric tool that uses a different approach to effort and schedule estimation.

3.2.1 COCOMO Il

The COCOMO (COnstructive COst MOdel) cost and schedule estimation model was originally
published in 1981 [Boehm 1981]. COCOMO II research started in 1994, and the model continues
to be updated at USC with the rest of the COCOMO model family. COCOMO II defined in
[Boehm et al. 2000] has three submodels: Applications Composition, Early Design and Post-
Architecture. They can be combined in various ways to deal with different software
environments. The Application Composition model is used to estimate effort and schedule on
projects typically done as rapid application development. The Early Design model involves the
exploration of alternative system architectures and concepts of operation. This model is based
on function points (or lines of code when available) and a set of five scale factors and seven
effort multipliers.

The Post-Architecture model is used when top level design is complete and detailed
information about the project is available and the software architecture is well defined. It uses
Source Lines of Code and / or Function Points for the sizing parameter, adjusted for reuse and
breakage; a set of 17 effort multipliers and a set of five scale factors that determine the
economies / diseconomies of scale of the software under development. This model is the most
frequent mode of estimation and used throughout this manual. The effort formula is:

Eq5 PM = A x Size® x /JEm,
Where

e PM is effort in person-months

e Aisa constant derived from historical project data

e Sizeis in KSLOC (thousand source lines of code), or converted from other size measures

e Bis an exponent for the diseconomy of scale dependent on additive scale drivers

e EMiis an effort multiplier for the i cost driver. The product of N multipliers is an overall
effort adjustment factor to the nominal effort.

The COCOMO II effort is decomposed by lifecycle phase and activity as detailed in 3.3.2. More
information on COCOMO can be found at
http://csse.usc.edu/csse/research/COCOMOII/cocomo main.html.

A web-based tool for the model is at http://csse.usc.edu/tools/ COCOMO.

Cost Estimation Models ¢ 11
UNCLASSIFIED

Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

3.2.2 SEER-SEM

SEER-SEM is a product offered by Galorath, Inc. This model is based on the original Jensen
model [Jensen 1983], and has been on the market over 15 years. The Jensen model derives from
COCOMO and other models in its mathematical formulation. However, its parametric
modeling equations are proprietary. Like True S, SEER-SEM estimates can be used as part of a
composite modeling system for hardware / software systems. Descriptive material about the
model can be found in [Galorath-Evans 2006].

The scope of the model covers all phases of the project lifecycle, from early specification
through design, development, delivery and maintenance. It handles a variety of environmental
and application configurations, and models different development methods and languages.
Development modes covered include object oriented, reuse, COTS, spiral, waterfall, prototype
and incremental development. Languages covered are 3rd and 4th generation languages (C++,
FORTRAN, COBOL, Ada, etc.), as well as application generators.

The SEER-SEM cost model allows probability levels of estimates, constraints on staffing, effort
or schedule, and it builds estimates upon a knowledge base of existing projects. Estimate
outputs include effort, cost, schedule, staffing, and defects. Sensitivity analysis is also provided
as is a risk analysis capability. Many sizing methods are available including lines of code and
function points. For more information, see the Galorath Inc. website at
http://www.galorath.com.

3.2.3 SLIM

The SLIM model is based on work done by Putnam [Putnam 1978] using the Norden / Rayleigh
manpower distribution. The central part of Putnam's model, called the software equation, is
[Putnam-Myers 1992]:

Eq 6 Product = Productivity Parameter x (Effort/B)* x Time*?
Where

e Product is the new and modified software lines of code at delivery time
e Productivity Parameter is a process productivity factor

e [Effort man years of work by all job classifications

e Bis a special skills factor that is a function of size

e Timeis lapsed calendar time in years

The Productivity Parameter, obtained from calibration, has values that fall in 36 quantized steps
ranging from 754 to 3,524,578. The special skills factor, B, is a function of size in the range from
18,000 to 100,000 delivered SLOC that increases as the need for integration, testing, quality
assurance, documentation and management skills grows.

The software equation can be rearranged to estimate total effort in man years:

Eq7 Effort = (Size x B3/ Productivity Parameter)3 X (1/Time4)
Putnam's model is used in the SLIM software tool based for cost estimation and manpower
scheduling [QSM 2003].

Cost Estimation Models ¢ 12
UNCLASSIFIED

Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

3.2.4 True S

True S is the updated product to the PRICE S model offered by PRICE Systems. PRICE S was
originally developed at RCA for use internally on software projects such as the Apollo moon
program, and was then released in 1977 as a proprietary model. It fits into a composite
modeling system and can be used to estimate more than just software costs. Many of the
model’s central algorithms were published in [Park 1988]. For more details on the model and
the modeling system see the PRICE Systems website at http://www.pricesystems.com.

The PRICE S model consists of three submodels that enable estimating costs and schedules for
the development and support of computer systems. The model covers business systems,
communications, command and control, avionics, and space systems. PRICE S includes features
for reengineering, code generation, spiral development, rapid development, rapid prototyping,
object-oriented development, and software productivity measurement. Size inputs include
SLOC, function points and / or Predictive Object Points (POPs). The True S system also provides
a COCOMO II capability.

The True Planning estimation suite from PRICE Systems contains both the True S model and
the COCOMO II cost model.

3.3 Model Comparisons

Comparisons between the models for the core metric definitions of size, activities and lifecycle
phases follow.

3.3.1 Size Inputs

This section describes the major similarities and differences between the models related to
software sizing. All models support size inputs for new and adapted software, and some
support automatically translated or generated code. The models differ with respect to their
detailed parameters for the developed categories of software per below.

Table 5 Comparison of Model Size Inputs
COCOMO Il Size Inputs SEER-SEM Size Inputs
New Software

True S Size Inputs

New Size
New Size Non-executable

New Size New Size

Modified Software

Adapted Size

% Design Modified (DM)

% Code Modified (CM)

% Integration Required (IM)
Assessment and Assimilation
(AA)

Software Understanding (SU)

Programmer Unfamiliarity
(UNFM)

Pre-exists Size 1

Deleted Size

Redesign Required %
Reimplementation Required
%

Retest Required %

Cost Estimation Models ¢ 13

UNCLASSIFIED

Adapted Size

Adapted Size Non-
executable

Amount of Modification

% of Design Adapted

% of Code Adapted

% of Test Adapted
Deleted Size
Code Removal Complexity

Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

Table 5 Comparison of Model Size Inputs

COCOMO Il Size Inputs SEER-SEM Size Inputs True S Size Inputs
Reused Software
Reused Size Pre-exists Size 1.2 Reused Size 2
% Integration Required (IM) Deleted Size Reused Size Non-

Assessment and Assimilation Redesign Required % executable

(AA) Reimplementation Required % of Design Adapted
% % of Code Adapted
Retest Required % % of Test Adapted

Deleted Size
Code Removal Complexity

Generated Code

Auto Generated Code Size
Auto Generated Size Non-

executable
Automatically Translated
Adapted SLOC Auto Translated Code Size
Automatic Translation Auto Translated Size Non-
Productivity executable

% of Code Reengineered
Deleted Code

Volatility
Requirements Evolution and Requirements Volatility
Volatility (REVL) (Change) 3

1 - Specified separately for Designed for Reuse and Not Designed for Reuse
2 - Reused is not consistent with AFCAA definition if DM or CM >0
3 - Not a size input but a multiplicative cost driver

The primary unit of software size in the effort models is Thousands of Source Lines of Code
(KSLOC). KSLOC can be converted from other size measures, and additional size units can be
used directly in the models as described next. User-defined proxy sizes can be developed for
any of the models.

3.3.1.1 COCOMO I

The COCOMO II size model is based on SLOC or function points converted to SLOC, and can
be calibrated and used with other software size units. Examples include use cases, use case
points, object points, physical lines, and others. Alternative size measures can be converted to
lines of code and used directly in the model or it can be independently calibrated directly to
different measures.

3.3.1.2 SEER-SEM

Several sizing units can be used alone or in combination. SEER can use SLOC, function points
and custom proxies. COTS elements are sized with Features and Quick Size. SEER allows proxies

Cost Estimation Models ¢ 14
UNCLASSIFIED

Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

as a flexible way to estimate software size. Any countable artifact can be established as measure.
Custom proxies can be used with other size measures in a project. Available pre-defined proxies
that come with SEER include Web Site Development, Mark 1l Function Point, Function Points (for
direct IFPUG-standard function points) and Object-Oriented Sizing.

SEER converts all size data into internal size units, also called effort units, Sizing in SEER-SEM
can be based on function points, source lines of code, or user-defined metrics. Users can
combine or select a single metric for any project element or for the entire project. COTS WBS
elements also have specific size inputs defined either by Features, Object Sizing, or Quick Size,
which describe the functionality being integrated.

New Lines of Code are the original lines created for the first time from scratch.

Pre-Existing software is that which is modified to fit into a new system. There are two categories
of pre-existing software:

e Pre-existing, Designed for Reuse
e Pre-existing, Not Designed for Reuse.

Both categories of pre-existing code then have the following subcategories:
Pre-existing lines of code which is the number of lines from a previous system
Lines to be Deleted are those lines deleted from a previous system.

Redesign Required is the percentage of existing code that must be redesigned to meet new system
requirements.

Reimplementation Required is the percentage of existing code that must be re-implemented,
physically recoded, or reentered into the system, such as code that will be translated into
another language.

Retest Required is the percentage of existing code that must be retested to ensure that it is
functioning properly in the new system.

SEER then uses different proportional weights with these parameters in their AAF equation
according to:

Eq 8 Pre-existing Effective Size = (0.4 x A) + (0.25 x B) + (0.3 5x C)
Where

e Ais the percentages of code redesign
e Bis the percentages of code reimplementation
e (s the percentages of code retest required

SEER also has the capability to take alternative size inputs:

Cost Estimation Models ¢ 15
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

Function-Point Based Sizing

e External Input (EI)

e External Output (EO)

e Internal Logical File (ILF)

e External Interface Files (EIF)

e External Inquiry (EQ)

e Internal Functions (IF) , any functions that are neither data nor transactions

Proxies

e Web Site Development

e Mark II Function Points
e Function Points (direct)
¢ Object-Oriented Sizing.

COTS Elements

e Quick Size

e Application Type Parameter

e Functionality Required Parameter
e Features

e Number of Features Used
e Unique Functions

o Data Tables Referenced

e Data Tables Configured

3.3.1.3 True S

The True S software cost model size measures may be expressed in different size units
including Source Lines of Code (SLOC), function points, Predictive Object Points (POPs) or Use
Case Conversion Points (UCCPs). True S also differentiates executable from non-executable
software sizes. Functional Size describes software size in terms of the functional requirements
that you expect a Software COTS component to satisfy. The True S software cost model size
definitions for all of the size units are listed below.

e Adapted Code Size
This describes the amount of existing code that must be changed, deleted, or adapted for use
in the new software project. When the value is zero (0.00), the value for New Code Size or
Reused Code Size must be greater than zero.

e Adapted Size Non-executable
This value represents the percentage of the adapted code size that is non-executable (such as
data statements, type declarations, and other non-procedural statements). Typical values for
fourth generation languages range from 5.00 percent to 30.00 percent. When a value cannot
be obtained by any other means, the suggested nominal value for non-executable code is
15.00 percent.

Cost Estimation Models ¢ 16
UNCLASSIFIED

Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

Amount for Modification

This represents the percent of the component functionality that you plan to modify, if any.
The Amount for Modification value (like Glue Code Size) affects the effort calculated for the
Software Design, Code and Unit Test, Perform Software Integration and Test, and Perform
Software Qualification Test activities.

Auto Gen Size Non-executable

This value represents the percentage of the Auto Generated Code Size that is non-executable
(such as, data statements, type declarations, and other non-procedural statements). Typical
values for fourth generation languages range from 5.00 percent to 30.00 percent. If a value
cannot be obtained by any other means, the suggested nominal value for non-executable
code is 15.00 percent.

Auto Generated Code Size

This value describes the amount of code generated by an automated design tool for
inclusion in this component.

Auto Trans Size Non-executable

This value represents the percentage of the Auto Translated Code Size that is non-
executable (such as, data statements, type declarations, and other non-procedural
statements). Typical values for fourth generation languages range from 5.00 percent to 30.00
percent. If a value cannot be obtained by any other means, the suggested nominal value for
non-executable code is 15.00 percent.

Auto Translated Code Size

This value describes the amount of code translated from one programming language to
another by using an automated translation tool (for inclusion in this component).

Auto Translation Tool Efficiency

This value represents the percentage of code translation that is actually accomplished by the
tool. More efficient auto translation tools require more time to configure the tool to translate.
Less efficient tools require more time for code and unit test on code that is not translated.
Code Removal Complexity

This value describes the difficulty of deleting code from the adapted code. Two things need
to be considered when deleting code from an application or component: the amount of
functionality being removed and how tightly or loosely this functionality is coupled with
the rest of the system. Even if a large amount of functionality is being removed, if it is
accessed through a single point rather than from many points, the complexity of the
integration will be reduced.

Deleted Code Size

This describes the amount of pre-existing code that you plan to remove from the adapted
code during the software project. The Deleted Code Size value represents code that is
included in Adapted Code Size, therefore, it must be less than, or equal to, the Adapted
Code Size value.

Cost Estimation Models ¢ 17
UNCLASSIFIED

Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

Equivalent Source Lines of Code

The ESLOC (Equivalent Source Lines of Code) value describes the magnitude of a selected cost
object in Equivalent Source Lines of Code size units. True S does not use ESLOC in routine
model calculations, but provides an ESLOC value for any selected cost object. Different
organizations use different formulas to calculate ESLOC.

The True S calculation for ESLOC is:
Eq 9 ESLOC = New Code + (0.7 x Adapted Code) + (0.1 x Reused Code)

To calculate ESLOC for a Software COTS, True S first converts Functional Size and Glue Code
Size inputs to SLOC using a default set of conversion rates. New Code includes Glue Code Size
and Functional Size when the value of Amount for Modification is greater than or equal to 25%.
Adapted Code includes Functional Size when the value of Amount for Modification is less than
25% and greater than zero. Reused Code includes Functional Size when the value of Amount
for Modification equals zero.

e Functional Size
This value describes software size in terms of the functional requirements that you expect a
Software COTS component to satisfy. When you select Functional Size as the unit of
measure (Size Units value) to describe a Software COTS component, the Functional Size
value represents a conceptual level size that is based on the functional categories of the
software (such as Mathematical, Data Processing, or Operating System). A measure of
Functional Size can also be specified using Source Lines of Code, Function Points, Predictive
Object Points or Use Case Conversion Points if one of these is the Size Unit selected.

e Glue Code Size
This value represents the amount of Glue Code that will be written. Glue Code holds the
system together, provides interfaces between Software COTS components, interprets return
codes, and translates data into the proper format. Also, Glue Code may be required to
compensate for inadequacies or errors in the COTS component selected to deliver desired
functionality.

e New Code Size
This value describes the amount of entirely new code that does not reuse any design, code,
or test artifacts. When the value is zero (0.00), the value must be greater than zero for
Reused Code Size or Adapted Code Size.

e New Size Non-executable
This value describes the percentage of the New Code Size that is non-executable (such as
data statements, type declarations, and other non-procedural statements). Typical values for
fourth generation languages range from 5.0 percent to 30.00 percent. If a value cannot be
obtained by any other means, the suggested nominal value for non-executable code is 15.00
percent.

o Percent of Code Adapted
This represents the percentage of the adapted code that must change to enable the adapted
code to function and meet the software project requirements.

Cost Estimation Models ¢ 18
UNCLASSIFIED

Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

e Dercent of Design Adapted
This represents the percentage of the existing (adapted code) design that must change to
enable the adapted code to function and meet the software project requirements. This value
describes the planned redesign of adapted code. Redesign includes architectural design
changes, detailed design changes, and any necessary reverse engineering.

e Percent of Test Adapted
This represents the percentage of the adapted code test artifacts that must change. Test plans
and other artifacts must change to ensure that software that contains adapted code meets
the performance specifications of the Software Component cost object.

e Reused Code Size
This value describes the amount of pre-existing, functional code that requires no design or
implementation changes to function in the new software project. When the value is zero
(0.00), the value must be greater than zero for New Code Size or Adapted Code Size.

e Reused Size Non-executable
This value represents the percentage of the Reused Code Size that is non-executable (such
as, data statements, type declarations, and other non-procedural statements). Typical values
for fourth generation languages range from 5.00 percent to 30.00 percent. If a value cannot
be obtained by any other means, the suggested nominal value for non-executable code is
15.00 percent.

3.3.1.4 SLIM

SLIM uses effective system size composed of new and modified code. Deleted code is not
considered in the model. If there is reused code, then the Productivity Index (PI) factor may be
adjusted to add in time and effort for regression testing and integration of the reused code.

SLIM provides different sizing techniques including:

e Sizing by history

e Total system mapping

e Sizing by decomposition
e Sizing by module

e Function point sizing.

Alternative sizes to SLOC such as use cases or requirements can be used in Total System
Mapping. The user defines the method and quantitative mapping factor.

3.3.2 Lifecycles, Activities and Cost Categories

COCOMO II allows effort and schedule to be allocated to either a waterfall or MBASE lifecycle.
MBASE is a modern iterative and incremental lifecycle model like the Rational Unified Process
(RUP) or the Incremental Commitment Model (ICM). The phases include: (1) Inception, (2)
Elaboration, (3) Construction, and (4) Transition.

True-S uses the nine DoD-STD-2167A development phases: (1) Concept, (2) System
Requirements, (3) Software Requirements, (4) Preliminary Design, (5) Detailed Design, (6) Code
/ Unit Test, (7) Integration & Test, (8) Hardware / Software Integration, and (9) Field Test.

Cost Estimation Models ¢ 19
UNCLASSIFIED

Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

In SEER-SEM the standard lifecycle activities include: (1) System Concept, (2) System
Requirements Design, (3) Software Requirements Analysis, (4) Preliminary Design, (5) Detailed
Design, (6) Code and Unit Test, (7) Component Integration and Testing, (8) Program Test, (9)
Systems Integration through OT&E & Installation, and (10) Operation Support. Activities may
be defined differently across development organizations and mapped to SEER-SEMs
designations.

In SLIM the lifecycle maps to four general phases of software development. The default phases
are: 1) Concept Definition, 2) Requirements and Design, 3) Construct and Test, and 4) Perfective
Maintenance. The phase names, activity descriptions and deliverables can be changed in SLIM.
The “main build” phase initially computed by SLIM includes the detailed design through
system test phases, but the model has the option to include the “requirements and design”
phase, including software requirements and preliminary design, and a “feasibility study” phase
to encompass system requirements and design.

The phases covered in the models are summarized in the Table 6.

Cost Estimation Models ¢ 20
UNCLASSIFIED

Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

Table 6 Lifecycle Phase Coverage

Model Phases
Inception
El ration
COCOMO I abo atq
Construction
Transition

System Concept

System Requirements Design

Software Requirements Analysis

Preliminary Design

Detailed Design

Code / Unit Test

Component Integration and Testing

Program Test

System Integration Through OT&E and Installation
Operation Support

SEER-SEM

Concept
System Requirements
Software Requirements
Preliminary Design
Detailed Design

True S Code / Unit Test
Integration and Test
Hardware / Software Integration
Field Test
System Integration and Test
Maintenance

Concept Definition
Requirements and Design
Construction and Test
Perfective Maintenance

SLIM

Cost Estimation Models ¢ 21
UNCLASSIFIED

Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

The work activities estimated in the respective tools are in Table 7.

Table 7 Work Activities Coverage
Model Activities

Management
Environment / CM
Requirements

COCOMO Il Design
Implementation
Assessment
Deployment
Management
Software Requirements
Design
Code
Data Programming
Test
CM
QA
Design
Programming
Data
SEPGM
QA
CFM
WBS Sub-elements of Phases:
Concept Definition

SLIM Requirements and Design
Construct and Test
Perfective Maintenance

SEER-SEM

True S

The categories of labor covered in the estimation models and tools are listed in Table 8.

Table 8 Labor Activities Covered

Model Categories
cocomMolll Software Engineering Labor*
Software Engineering Labor*
SEER-SEM
Purchases

Software Engineering Labor*
Purchased Good

True S
Purchased Service
Other Cost
SLIM Software Engineering Labor

* Project Management (including contracts), Analysts,
Designers, Programmers, Testers, CM, QA, and Documentation

Cost Estimation Models ¢ 22
UNCLASSIFIED

Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

4 Software Resource Data Report (SRDR)

The Software Resources Data Report (SRDR) is used to obtain both the estimated and actual
characteristics of new software developments or upgrades. Both the Government program
office and, after contract award, the software contractor submit this report. For contractors, this
report constitutes a contract data deliverable that formalizes the reporting of software metric
and resource data. All contractors, developing or producing any software development element
with a projected software effort greater than $20M (then year dollars) on major contracts and
subcontracts within ACAT I and ACAT IA programs, regardless of contract type, must submit
SRDRs. The data collection and reporting applies to developments and upgrades whether
performed under a commercial contract or internally by a government Central Design Activity
(CDA) under the terms of a Memorandum of Understanding (MOU).

4.1 DCARC Repository

The Defense Cost and Resource Center (DCARC), which is part of OSD Cost Assessment and
Program Evaluation (CAPE), exists to collect Major Defense Acquisition Program (MDAP) cost
and software resource data and make those data available to authorized Government analysts.
Their website! is the authoritative source of information associated with the Cost and Software
Data Reporting (CSDR) system, including but not limited to: policy and guidance, training
materials, and data. CSDRs are DoD’s only systematic mechanism for capturing completed
development and production contract "actuals" that provide the right visibility and consistency
needed to develop credible cost estimates. Since credible cost estimates enable realistic budgets,
executable contracts and program stability, CSDRs are an invaluable resource to the DoD cost
analysis community and the entire DoD acquisition community.

The Defense Cost and Resource Center (DCARC), was established in 1998 to assist in the re-
engineering of the CSRD process. The DCARC is part of OSD Cost Assessment and Program
Evaluation (CAPE). The primary role of the DCARC is to collect current and historical Major
Defense Acquisition Program cost and software resource data in a joint service environment
and make those data available for use by authorized government analysts to estimate the cost of
ongoing and future government programs, particularly DoD weapon systems.

The DCARC's Defense Automated Cost Information Management System (DACIMS) is the
database for access to current and historical cost and software resource data needed to develop
independent, substantiated estimates. DACIMS is a secure website that allows DoD
government cost estimators and analysts to browse through almost 30,000 CCDRs, SRDR and
associated documents via the Internet. It is the largest repository of DoD cost information.

! http://dcarc.cape.osd.mil/CSDR/CSDROverview.aspx

Software Resource Data Report (SRDR) ¢ 23
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

4.2 SRDR Reporting Frequency

The SRDR Final Developer Report contains measurement data as described in the contractor's
SRDR Data Dictionary. The data reflects the scope relevant to the reporting event, Table 9. Both
estimates (DD Form 2630-1,2) and actual results (DD Form 2630-3) of software (SW)
development efforts are reported for new or upgrade projects.

¢ SRDR submissions for contract complete event shall reflect the entire software development
project.

¢ When the development project is divided into multiple product builds, each representing
production level software delivered to the government, the submission should reflect each
product build.

e SRDR submissions for completion of a product build shall reflect size, effort, and schedule
of that product build.

Table 9 SRDR Reporting Events

Report
Event Due Who Provides Scope of Report
Pre-Contract Initial Government Estimates of the entire completed project.
(180 days prior Program Office Measures should reflect cumulative grand
to award) totals.
Contract Initial Contractor Estimates of the entire project at the level of
award detail agreed upon. Measures should reflect
cumulative grand totals.
At start of each Initial Contractor Estimates for completion for the build only.
build
Estimates Initial Contractor Corrections to the submitted estimates.
corrections
At end of each Final Contractor Actuals for the build only.
build
Contract Final Contractor Actuals for the entire project. Measures
completion should reflect cumulative grand totals.
Actuals Final Contractor Corrections to the submitted actuals.
corrections

Perhaps it is not readily apparent how important it is to understand the submission criteria.
SRDR records are a mixture of complete contracts and individual builds within a contract. And
there are initial and final reports along with corrections. Mixing contract data and build data or
mixing initial and final results or not using the latest corrected version will produce
inconclusive, if not incorrect, results.

The report consists of two pages, see Chapter 9.4. The fields in each page are listed below.
Software Resource Data Report (SRDR) * 24

UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

4.3 SRDR Content

4.3.1 Administrative Information (SRDR Section 3.1)

Security Classification
Major Program

e Program Name
e Phase / Milestone
e Reporting Organization Type (Prime, Subcontractor, Government)

Name / Address

e Reporting Organization

e Division

Approved Plan Number

Customer (Direct-Reporting Subcontractor Use Only)
Contract Type

WBS Element Code

WBS Reporting Element

Type Action

e Contract No

e Latest Modification

e Solicitation No

e Common Reference Name

e Task Order / Delivery Order / Lot No

Period of Performance

e Start Date (YYYYMMDD)
e End Date (YYYYMMDD)

Appropriation (RDT&E, Procurement, O&M)
Submission Number

Resubmission Number

Report As Of (YYYYMMDD)

Date Prepared (YYYYMMDD)

Point of Contact

e Name (Last, First, Middle Initial)

e Department

e Telephone Number (include Area Code)
o Email

e Development Organization

Software Process Maturity
Lead Evaluator
Certification Date

Software Resource Data Report (SRDR) * 25
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

Evaluator Affiliation

Precedents (List up to five similar systems by the same organization or team.)
SRDR Data Dictionary Filename

Comments (on Report Context and Development Organization)

4.3.2 Product and Development Description (SRDR Section 3.2)

Functional Description. A brief description of its function.
Software Development Characterization
Application Type

e Primary and Secondary Programming Language.

e Percent of Overall Product Size. Approximate percentage (up to 100%) of the product
size that is of this application type.

e Actual Development Process. Enter the name of the development process followed for
the development of the system.

e Software Development Method(s). Identify the software development method or
methods used to design and develop the software product .

e Upgrade or New Development. Indicate whether the primary development was new
software or an upgrade.

e Software Reuse. Identify by name and briefly describe software products reused from
prior development efforts (e.g. source code, software designs, requirements
documentation, etc.).

COTS / GOTS Applications Used.

e Name. List the names of the applications or products that constitute part of the final
delivered product, whether they are COTS, GOTS, or open-source products.

e Integration Effort (Optional). If requested by the CWIPT, the SRD report shall contain
the actual effort required to integrate each COTS / GOTS application identified in
Section 3.2.4.1.

Staffing.

e DPeak Staff. The actual peak team size, measured in full-time equivalent (FTE) staff.
e DPeak Staff Date. Enter the date when the actual peak staffing occurred.
e Hours per Staff-Month. Enter the number of direct labor hours per staff-month.

Personnel Experience in Domain. Stratify the project staff domain experience by experience
level and specify the percentage of project staff at each experience level identified. Sample
Format 3 identifies five levels:

e Very Highly Experienced (12 or more years)
e Highly Experienced (6 to 12 years)

e Nominally Experienced (3 to 6 years)

e Low Experience (1 to 3 years)

e Inexperienced / Entry Level (less than a year)

Software Resource Data Report (SRDR) * 26
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

4.3.3 Product Size Reporting (SRDR Section 3.3)

Number of Software Requirements. Provide the actual number of software requirements.

Total Requirements. Enter the actual number of total requirements satisfied by the
developed software product at the completion of the increment or project.

New Requirements. Of the total actual number of requirements reported, identify how
many are new requirements.

Number of External Interface Requirements. Provide the number of external interface
requirements, as specified below, not under project control that the developed system
satisfies.

Total External Interface Requirements. Enter the actual number of total external interface
requirements satisfied by the developed software product at the completion of the
increment or project.

New External Interface Requirements. Of the total number of external interface
requirements reported, identify how many are new external interface requirements.

Requirements Volatility. Indicate the amount of requirements volatility encountered during
development as a percentage of requirements that changed since the Software Requirements

Review.

Software Size.

Delivered Size. Capture the delivered size of the product developed, not including any
code that was needed to assist development but was not delivered (such as temporary
stubs, test scaffoldings, or debug statements). Additionally, the code shall be partitioned
(exhaustive with no overlaps) into appropriate development categories. A common set
of software development categories is new, reused with modification, reused without
modification, carry-over code, deleted code, and auto-generated code.

e Reused Code With Modification. When code is included that was reused with
modification, provide an assessment of the amount of redesign, recode, and retest
required to implement the modified or reused code.

¢ Reuse Code Without Modification. Code reused without modification is code that
has no design or code modifications. However, there may be an amount of retest
required. Percentage of retest should be reported with the retest factors described
above.

e Carryover Code. Report shall distinguish between code developed in previous
increments that is carried forward into the current increment and code added as part
of the effort on the current increment.

¢ Deleted Code. Include the amount of delivered code that was created and
subsequently deleted from the final delivered code.

e Auto-generated Code. If the developed software contains auto-generated source
code, report an auto-generated code sizing partition as part of the set of
development categories.

e Subcontractor-Developed Code.

Software Resource Data Report (SRDR) ¢ 27
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

4.3.4

UNCLASSIFIED
Software Cost Estimation Metrics Manual

Counting Convention. Identify the counting convention used to count software size.
Size Reporting by Programming Language (Optional).

Standardized Code Counting (Optional). If requested, the contractor shall use a publicly
available and documented code counting tool, such as the University of Southern
California Code Count tool, to obtain a set of standardized code counts that reflect
logical size. These results shall be used to report software sizing.

Resource and Schedule Reporting (SRDR Section 3.4)

The Final Developer Report shall contain actual schedules and actual total effort for each
software development activity.

Effort. The units of measure for software development effort shall be reported in staff-
hours. Effort shall be partitioned into discrete software development activities.

WBS Mapping.

Subcontractor Development Effort. The effort data in the SRD report shall be separated
into a minimum of two discrete categories and reported separately: Prime Contractor
Only and All Other Subcontractors.

Schedule. For each software development activity reported, provide the actual start and
end dates for that activity.

4.3.5 Product Quality Reporting (SRDR Section 3.5 - Optional)

Quality should be quantified operationally (through failure rate and defect discovery rate).
However, other methods may be used if appropriately explained in the associated SRDR Data
Dictionary.

e Number of Defects Discovered. Report an estimated number of defects discovered during
integration and qualification testing. If available, list the expected defect discovery counts
by priority, e.g. 1, 2, 3, 4, 5. Provide a description of the priority levels if used.

e Number of Defects Removed. Report an estimated number of defects removed during
integration and qualification testing. If available, list the defect removal counts by priority.

Software Resource Data Report (SRDR) ¢ 28
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

4.3.6 Data Dictionary

The SRDR Data Dictionary contains, at a minimum, the following information in addition to the
specific requirements identified in Sections 3.1 through 3.5:

e Experience Levels. Provide the contractor's specific definition (i.e., the number of years of
experience) for personnel experience levels reported in the SRD report.

e Software Size Definitions. Provide the contractor's specific internal rules used to count
software code size.

e Software Size Categories. For each software size category identified (i.e., New, Modified,
Unmodified, etc.), provide the contractor's specific rules and / or tools used for classifying
code into each category.

e Peak Staffing. Provide a definition that describes what activities were included in peak
staffing.

e Requirements Count (Internal). Provide the contractor's specific rules and / or tools used to
count requirements.

e Requirements Count (External). Provide the contractor's specific rules and / or tools used to
count external interface requirements.

¢ Requirements Volatility. Provide the contractor's internal definitions used for classifying
requirements volatility.

e Software Development Activities. Provide the contractor's internal definitions of labor
categories and activities included in the SRD report's software activity.

e Product Quality Reporting. Provide the contractor's internal definitions for product quality
metrics being reported and specific rules and / or tools used to count the metrics.

Software Resource Data Report (SRDR) ¢ 29
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

5 Data Assessment and Processing

This chapter discusses transforming the SRDR data into useful information for use in creating
Cost Estimating Relationships (CER) and to provide productivity benchmarks for use in
management oversight.

The Software Resources Data Report (SRDR) has data quality issues not uncommon with other
datasets. This presents many challenges when attempting to create CERs and productivity
benchmarks. The list below shows the challenges when working with this data:

¢ Inadequate information on modified code (only size provided)
¢ Inadequate information on size change or growth

e Size measured inconsistently

¢ Inadequate information on average staffing or peak staffing
¢ Inadequate information on personnel experience

e Inaccurate effort data in multi-build components

e Missing effort data

e Replicated duration (start and end dates) across components
¢ Inadequate information on schedule compression

e Missing schedule data

¢ No quality data

The remedy for some of these challenges is to find a way to normalize the data to the definitions
discussed in Chapter 2. Other techniques are required to fill in missing data, either by
consulting other sources or using statistical techniques to fill in missing values in a table. What
is needed is a process to make the data usable.

5.1 Workflow

The data assessment and processing workflow has six steps. This workflow was used in the
analysis of the SRDR data. Each of these steps is described in detail.

1. Gather the data that has been collected.

2. Review and inspect each data point.

3. Determine a quantitative quality level based on the data inspection.

4. Correct missing or questionable data. There were several things that can be done about this.
Data that cannot be repaired is excluded from the analysis.

5. The data has to be normalized to a common unit of measure or scope of what is covered by
the data.

6. Finally the data is segmented by Operating Environment and Software Domain.

5.1.1 Gather Collected Data

Historical data is stored in a variety of formats. Often there is data in a record that is not
relevant for cost estimation analysis. All too often, there is not enough data to support a
thorough analysis.

Data Assessment and Processing * 30
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

The data has to be transformed from different formats into a common data format that supports
the analysis objectives. A common data format for cost estimation analysis would be different
for analysis of requirements growth, defect discovery / removal or process improvement return
on investment to name a few.

The common data format for cost estimation analysis requires detail information on:

e Amount of workload (expressed as a functional measure or a product measure)
e Development and support effort
e Project or build duration

Additional contextual data is needed to provide information on what the data represents, e.g.,

¢ Organization that developed the software

e What the application does

e Where the software fits into the system (is it all of the software, a build, a configuration
item, or a small software unit)

The common data format used in analyzing SRDR data had additional information than was
found in the SRDR report.
5.1.2 Inspect each Data Point

As the gathered data is being transformed into the common data format, inspect the data for
completeness, integrity, and “reasonable-ness”. The first activity is to examine the project
context information.

Project Context

e Are all of the data available to fill the common data format fields?
e How would this software component be characterized?

¢ What does this component do?

e Were there any extenuating circumstances concerning development, e.g. management
change, large requirements change, stop / restart work?

e Is the Data Dictionary for that record available as a standalone file?

e Is there any additional information that can be consulted about the data during analysis,
such as:

e Acquisition Strategy

e Acquisition Support Plan (ASP)

e Contract Plan

e Cost Analysis Requirements Document (CARD)
e Capability Description Document (CDD)

e Software Requirements Specification (SRS)

e Work Breakdown Structure (WBS)

e Earned Value Management System data (EVMS)

Next, the size, effort, schedule and productivity data are examined.

Data Assessment and Processing ¢ 31
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

Size Data
e Does the size data look sound?

e Is the size part of multi-build release?

e Was all code auto-generated?

e Was code rewritten after AG?

e Was a portion of a legacy system included in the sizing data?

e How much software was adapted (modified)?
¢ How much software was reused (no changes)?

e Is there effort and schedule data for each software activity?
e Is there repeating size data?

Effort Data
¢ What labor was included in the reported hours?

¢ Engineering labor

¢ Management labor

e Support labor: CM, QA, Process Improvement, Safety, Security, Dev. Environment
support

e What labor was reported in the "Other" activity?

e Was Requirements effort reported for all builds?
e Were there continuous integration activities across all builds?

Schedule Data

e Was there schedule compression mentioned on the project
e Were there parallel multiple builds (same start & end date)

Productivity Screening

e Isa quick productivity check reasonably close to software with similar functionality?

e Is this record an outlier in a scatter plot with other similar data?

Data Assessment and Processing ¢ 32
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

5.1.3 Determine Data Quality Levels

From the inspection process, assign the record a data quality rating. The criteria in Table 10 can
be used to determine rating values.

Table 10 Data Quality Rating Scale

Attribute Value Condition

1.0 if size data present

Size: - -
0 if no size data
1.0 if size is Logical SLOC
Size Count Type: 0.7 ifsize is Non-Commented Source Statements
(providing size 0.5 ifsize is Physical Lines (Comment and Source Statements)
data is present) 0.4 ifsizeis Total Lines (all lines in file: blank, comment, source)
0 if no size data
1.0 if modification parameters provided for Auto-gen, Modified &
Reuse
ESLOC . . "
) 0.5 if New SLOC and no size data for Auto-gen, Modified or Reuse
Parameters:

0 if no modification parameters provided for either Modified, Auto-
gen, or Reused SLOC counts

1.0 if Total Size is 5,000 < Size < 250,000
0 if Total Size < 5,000 or Size > 250,000

CSCl-level Data:

1.0 if effort reported for all phases

Effort: 0.5 if effort is reported as a total

0 if effort is missing for a phase

1.0 if duration reported for all phases

Schedule: 0.5 if duration is reported as a total
0 is duration is missing for a phase
1.0 if record is in the expected value range
Productivity: 0.5 if record is within 1 standard deviation from the mean
0 if record is a clear outlier

As each record is rated by the criteria above, an overall quality level is assigned by:

Eq 10 Quality Level = (Size + Size Count Type + ESLOC Parameters +
CSCI level + Effort + Schedule + Productivity) / 7

The quality level is a quick indicator of the degree of issues found in the record. As the recorded
is corrected through supplemental information, the rating is revised. Because the range of the
quality level scale is between 0 and 1.0, it could be used as a weight during analysis.

Data Assessment and Processing * 33
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

5.1.4 Correct Missing or Questionable Data

The quality level makes clear which records need additional work. There are several approaches
available to resolving missing or questionable data. These are listed in a recommended order:

1. Consult the accompanying Data Dictionary discussed in Chapter 4.3.6

2. Consult any supplemental on the project that is available, e.g., ASP, CARD, CDD, EVMS,
SRS, WBS, etc.

3. Scheduling follow-up meetings with SRDR data contributor. Data quality issues that were
fixed in the past by the SRDR contributor:

e Revised missing size, effort and duration data

e Obtained Adaptation Adjustment Factor (AAF) parameters

e Confirmed productivity type and environment

e Confirmed CSClI-level of reporting

e Asked about problems with - high / low, long / short - size, effort and duration data

As a result of inspecting the data and attempting to correct the issues found, no "bad" data or
“outliers” are excluded from the analysis on arbitrary grounds. However, data issues that
cannot be resolved are excluded from analysis.

5.1.5 Normalize Size and Effort Data

Normalizing data is making a type of data the same. For example, if SLOC was measured by
different criteria, all SLOC counts are converted into a common count method. If effort data
covers different lifecycle phases, all effort data is converted to cover the same phases.
Normalization reduces noise in the data. Otherwise, it will pose a significant threat to statistical
validity.

5.1.5.1 Converting to Logical SLOC

With the SRDR data, the SLOC were counted using different methods.

e Total Count: a line in a file, e.g. carriage returns including blanks and comment lines

¢ Non-Commented Source Statements (NCSS) Count: a line in a file that is not a blank or
comment line

e Logical Count: as defined earlier in Chapter 2.2.2.1

For analysis, the definition of a source line of code needs to be as consistent as possible to
eliminate noise in the data. A logical source line of code has been selected as the baseline SLOC
definition.

Data Assessment and Processing ¢ 34
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

If a source line of code count was defined as either Total or NCSS, these counts were converted
to a Logical SLOC count. An experiment was run using the UCC tool, described in Appendix
9.2, on public domain software applications and additional contributions from USC-CSSE
Affiliates. Total, NCSS and Logical counts were taken from the program files. Six programming
languages were sampled:

e Ada

o C#

e (C/C++
e Java

e PERL
e PHP

The total number of data points was 40. The results of this experiment are described next.
NCSS Line Count Conversion to Logical

The size counts for NCSS and Logical were analyzed for their relationship. Two analyses were
conducted, one for all of the size data and another for the lower 80% of the size data. The two
relationships are expressed as follows (the intercept was constrained to zero?):

Eq 11 All Sizes: Logical SLOC count = 0.44 x NCSS count
Eq 12 Lower 80%: Logical SLOC count = 0.66 x NCSS count

The statistics for these relationships are in Table 11 and a scatter plot in Figure 1.

Table 11 NCSS-Logical Relationship Statistics

Statistics All Sizes Lower 80%
Coefficient 0.44 0.66
Total number of observations 40 32
Min - Max Range (KSLOC) 2.3-1,690 2.3-149
Adjusted R2 0.86 0.95
Standard Error 0.03 0.03
Lower 95% Confidence Interval 0.38 0.60
Upper 95% Confidence Interval 0.55 0.71
T-Statistic 15.35 23.73

2 When modeling this relationship, an overhead amount (as represented by an intercept value) does not
make sense, i.e., there is no overhead if there are zero lines to be converted. Incidentally, when the
regression was run on all sizes without the zero constraint, the constant had a T-statistic of 1.90 and a P-
level of 0.70.

Data Assessment and Processing * 35
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

TO0.000

140000

*
600,000 120000
500,000 3 100000
[&]
S 8 .
@ 400.000 - m 80000
=4
? 300,000 2 60000

200,000 40000 * + ¥
* *
.}/ .
100,000 20000
[]

a 200,000 400,000 600,000 800,000 1,000,000:1,200,000 0 20,000 40,000 ©0,000 80,000 100,000 120,000 140,000 180,000

MCES MCS5
All Counts Lower 80% of Counts

Figure 1 NCSS to Logical SLOC Plot

Total Line Count Conversion to Logical

As with NCSS counts, counts for NCSS and Logical were analyzed for their relationship. Two
analyses were conducted, one for all of the size data and another for the lower 80% of the size
data. The two relationships are expressed as follows (the intercept was constrained to zero):

Eq 13 All Sizes: Logical SLOC count = 0.29 x Total count
Eq 14 Lower 80%: Logical SLOC count = 0.34 x Total count

The statistics for these relationships are in Table 12 and a scatter plot in Figure 2.

Table 12 Total-Logical Relationship Statistics

Statistics All Sizes Lower 80%
Coefficient 0.29 0.34
Total number of observations 40 32
Min - Max Range (KSLOC) 3.5-2,249 3.5-265
Adjusted R2 0.95 0.85
Standard Error 0.01 0.03
Lower 90% Confidence Interval 0.27 0.29
Upper 90% Confidence Interval 0.31 0.39
T-Statistic 27.12 13.00

Data Assessment and Processing * 36
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

700,000 140,000
600,000 * 120,000 *
500,000 r] - 100,000
§ 400,000 * § 80,000 *
o v
i g .
E‘ 300,000)’ =0.2871% §| 60,000
R*=0.93192 * et .
200,000 40,000 ¥ v
p e
.00 / -
100,000 [20,000 .“‘
l?/ im’
-
o a
[} 500000 1000000 1500000 2000000 2500000 0 50,000 100000 150,000 200,000 250,000 300,000
Tatal Linas Taotal Lines
All Counts Lower 80% of Counts
Figure 2 Total to Logical SLOC Plot
Conclusion

The 80% solution was used in this analysis. The 80% conversion factors appear to be more
“reasonable” than the 100% factors. A future version of this manual will explore the
relationships for NCSS and Total counts to Logical counts for each of the six programming
languages.

5.1.5.2 Convert Raw SLOC into Equivalent SLOC

Equivalent Size is a method used to make new and adapted code equivalent so they can be
rolled up into an aggregate size estimate (discussed in Chapter 2.3.2). This adjustment is called
Equivalent Source Lines of Code (ESLOC):

Eq 15 ESLOC = New SLOC +
(AAFy x Modified SLOC) +
(AAFg x Reused SLOC) +
(AAFaG x Auto-Generated SLOC)

Where: AAFi = (0.4 x DM) + (0.3 x CM) + (0.3 x IM)

The SRDR data did not include the parameters for DM, CM and IM. Independent data
collection of similar data was conducted. Based on the data collected and the grouping of the
data by Operating Environment (Chapter 5.2.1) and Productivity Types (Chapter 5.2.2),
guidelines for filling-in missing data were derived from that data that had the adaptation
parameters, Table 13.

As shown in the equation above, there are four types of code: New, Auto-Generated, Reused,
and Modified (see Chapter 2.2.1). The DM, CM and IM parameters are not required for each

type.

e New code does not require any adaption parameters. Nothing has been modified.

Data Assessment and Processing * 37
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

e Auto-Generated code does not require the DM or CM adaption parameters. However, it
does require testing, IM. If Auto-Generated code does require modification, then it becomes
Modified code and the adaptation factors for Modified code apply.

e Reuse code does not require the DM or CM adaption parameters either. It also requires
testing, IM. If Reused code does require modification, then it becomes Modified code and
the adaptation factors for Modified code apply.

e Modified code requires the three parameters, DM, CM and IM, representing modifications
to the modified code design, code and integration testing.

Table 13 shows DM, CM and IM for different productivity types. The table shows the code type,
number of records used to derive the adaptation parameters, the mean value of the parameter
with its 95% confidence interval, and the mean value. The adaptation adjustment factor (AAF)
is shown in the last column. This factor is the portion of adapted code that will be used for
equivalent SLOC. Unfortunately there was not enough data to support reporting for all
productivity types.

Table 13 Adapted Code Parameters

DM CM IM
PT Code Type # Mean M Mean M Mean M | AAF
Auto-Gen 0 0.00 +0.00(0.00| 0.00
SCP Reused 18 0.51 +0.21(0.42| 0.15
Modified 7 10.26 £0.22|0.25|0.33 £+ 0.20 {0.50 | 0.66 + 0.40|1.00 | 0.40
Auto-Gen 0 0.00 +0.00(0.00| 0.00
RTE Reused 8 0.17 +0.23(0.10| 0.05
Modified 14 {0.13 £ 0.10{0.05|0.30 £ 0.19|0.10 | 0.95 + 0.07 [1.00| 0.85
Auto-Gen 1 0.13 +0.00(0.13| 0.04
MP Reused 12 0.36 +0.20|0.33| 0.11
Modified 21 |10.75+0.12(1.00 ({0.89 £+ 0.12 ({1.00 | 0.95 + 0.07|1.00| 0.85
Auto-Gen 12 0.37 +0.25|0.13| 0.11
SYS Reused 6 0.56 +0.40|0.50| 0.17
Modified 14 (0.22 + 0.19(0.03|0.34 £+ 0.20|0.17 | 0.68 + 0.18 | 0.58 | 0.39
Auto-Gen 7 0.12 +0.20(0.10| 0.04
SCI Reused 15 0.46 +0.20(0.33| 0.14
Modified 10 (0.34 £ 0.30{0.17|0.53 £ 0.30|0.41 | 0.78 +0.18 ({0.88 | 0.53
Auto-Gen 2 0.33 £0.00({0.33| 0.10
IIS Reused 7 0.45 +£0.240.33| 0.14
Modified 4 |1.00 £0.00({1.00/0.81 +0.60|1.00| 0.90 +0.32(1.00| 0.91

General observations and usage guidelines are:

e The more real-time nature of the software, the less the design is modified, i.e. Intel and
Information Systems (IIS) have a DM of 100% whereas Sensor Control and Signal Processing
(SCP) have a DM of 26%.

e The same is generally true for CM. The real-time nature appears to influence how much
code is modified.

Data Assessment and Processing * 38
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

e IMis usually higher than either DM or CM. It the software being estimated requires more
reliability or is more complex, a higher value for IM should be used.

While the mean value is provided for DM, CM and IM, compare the mean to the median. This is
an indication of skewing in the data. This should also influence your decision on which values
to choose within the 95% confidence interval.

A future version of this manual will process more data and expand the adapted code parameter
table to additional productivity types. It will also analyze these parameters across operating
environments.

5.1.5.3 Adjust for Missing Effort Data

Guidelines for adjusting for missing effort data are shown in Table 14. As these were developed,
consideration was given to the productivity type (PT). Average Effort percentages were derived
for each Productivity Type using the analysis dataset (~300 records). Any missing effort data
was adjusted using the appropriate effort percentage and productivity type. Data missing more
than two phases of effort were not used in the analysis. This analysis is based on research by
[Tan 2012].

Table 14 Average Activity Effort Percentages Based On Complete Data

Productivity

Type Requirement Arch & Design Code & Unit Test Integration & QT
1S 11.56% 27.82% 35.63% 24.99%

MP 20.56% 15.75% 28.89% 34.80%

PLN 16.22% 12.27% 50.78% 20.73%

RTE 15.47% 26.65% 26.71% 31.17%

SCI 7.38% 39.90% 32.05% 20.67%

SSP 10.80% 45.20% 20.34% 23.66%

SYS 17.61% 21.10% 28.75% 32.54%

VC 18.47% 23.60% 31.32% 26.61%

A future version of this manual will process more data and expand the average effort
percentages table to additional productivity types. Additionally, analysis of schedule duration
for the different activities will be conducted.

5.2 Data Segmentation

Data segmentation can be challenging because Cost and Schedule Estimating Relationships
(CER and SER) are different for different types of software. Factors such as application
complexity; impact of loss due to reliability; autonomous modes of operation; constraints on
timing, storage, and power; security requirements; and complex interfaces influence the cost
and time to develop applications. Parametric cost models have a number of adjustable
parameters that attempt to account for these factors. Many of these parameters, however, are
unknown until contract award.

Data Assessment and Processing * 39
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

Instead of developing CERs and SERs with many parameters, the approach taken by this project
is based on grouping similar software applications together. These groups are called

Application Domains. Application Domains implement a combination of hardware and

software components to achieve the intended functionality. However, because Application

Domains then to represent an entire subsystem, e.g. Communications, the approach taken was
to use a generic description of software domains called productivity types (PT). The operating
environment for each PT is considered as well. Both the operating environment and domain are
considered in this analysis to produce the productivity types.

5.2.1 Operating Environments (OpEnv)

Operating Environments have similar systems, similar products, similar operational

characteristics, and similar requirements:

e High-speed vehicle versus stationary

e Battery operated versus ground power

e Unrecoverable platform versus readily accessible
e Limited, non-upgradeable computing processor capacity versus racks of processors
¢ TFixed internal and external memory capacity versus expandable capacity

There are 11 operating environments:

Table 15 Operating Environments

Operating Environment (OpEnv)

Examples

Fixed (GSF)

Command Post, Ground Operations Center,
Ground Terminal, Test Faculties

Ground Site (GS)
Mobile (GSM)

Intelligence gathering stations mounted on
vehicles, Mobile missile launcher

Manned (GVM)

Tanks, Howitzers, Personnel carrier

Ground Vehicle (GV)
Unmanned (GVU)

Robotic vehicles

. Manned (MVM)
Maritime Vessel (MV)

Aircraft carriers, destroyers, supply ships,
submarines

Unmanned (MVU)

Mine hunting systems, Towed sonar array

Manned (AVM)

Fixed-wing aircraft, Helicopters

Aerial Vehicle (AV)
Unmanned (AVU)

Remotely piloted air vehicles

Manned (SVM)

Passenger vehicle, Cargo vehicle, Space
station

Space Vehicle (SV)
Unmanned (SVU)

Orbiting satellites (weather,
communications), Exploratory space vehicles

Ordinance Vehicle (OV) Unmanned (OVU)

Air-to-air missiles, Air-to-ground missiles, Smart
bombs, Strategic missiles

Data Assessment and Processing * 40
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

The operating environments can be aggregated into six high-level environments. This is useful
when there is not enough data for each of the 11 environments in Table 15:

Ground Site (GS)
Ground Vehicle (GV)
Maritime Vessel (MV)
Aerial Vehicle (AV)
Space Vehicle (SV)
Ordinance Vehicle (OV)

AN

5.2.2 Productivity Types (PT)

Productivity types are groups of application productivities that are characterized by the
following:

e Required software reliability

e Database size - if there is a large data processing and storage component to the software
application

e Product complexity

¢ Integration complexity

e Real-time operating requirements

e Platform volatility, Target system volatility

e Special display requirements

¢ Development re-hosting

¢ Quality assurance requirements

e Security requirements

e Assurance requirements

e Required testing level

There are 14 productivity types:

Data Assessment and Processing ¢ 41
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED

Software Cost Estimation Metrics Manual

Table 16 Productivity Types

PT

Description

Sensor Control and Signal
Processing (SCP)

Software that requires timing-dependent device coding to
enhance, transform, filter, convert, or compress data signals.

Ex.: Beam steering controller, sensor receiver / transmitter control,
sensor signal processing, sensor receiver / transmitter test.

Ex. of sensors: antennas, lasers, radar, sonar, acoustic,
electromagnetic.

Vehicle Control (VC)

Hardware & software necessary for the control of vehicle primary
and secondary mechanical devices and surfaces.

Ex: Digital Flight Control, Operational Flight Programs, Fly-By-Wire
Flight Control System, Flight Software, Executive.

Vehicle Payload (VP)

Hardware & software which controls and monitors vehicle
payloads and provides communications to other vehicle
subsystems and payloads.

Ex: Weapons delivery and control, Fire Control, Airborne
Electronic Attack subsystem controller, Stores and Self-Defense
program, Mine Warfare Mission Package.

Real Time Embedded (RTE)

Real-time data processing unit responsible for directing and
processing sensor input / output.

Ex: Devices such as Radio, Navigation, Guidance, Identification,
Communication, Controls And Displays, Data Links, Safety, Target
Data Extractor, Digital Measurement Receiver, Sensor Analysis,
Flight Termination, Surveillance, Electronic Countermeasures,
Terrain Awareness And Warning, Telemetry, Remote Control.

Mission Processing (MP)

Vehicle onboard master data processing unit(s) responsible for
coordinating and directing the major mission systemes.

Ex.: Mission Computer Processing, Avionics, Data Formatting, Air
Vehicle Software, Launcher Software, Tactical Data Systems,
Data Control And Distribution, Mission Processing, Emergency
Systems, Launch and Recovery System, Environmental Control
System, Anchoring, Mooring and Towing.

Process Control (PC)

Software that manages the planning, scheduling and execution
of a system based on inputs, generally sensor driven.

System Software (SYS)

Layers of software that sit between the computing platform and
applications.

Ex: Health Management, Link 16, Information Assurance,
Framework, Operating System Augmentation, Middleware,
Operating Systems.

Planning Software (PLN)

Provides the capability to maximize the use of the platform. The
system supports all the mission requirements of the platform and
may have the capability to program onboard platform systems
with routing, targeting, performance, map, and Intel data.

Scientific Software (SCI)

Non real time software that involves significant computations
and scientific analysis.

Ex: Environment Simulations, Offline Data Analysis, Vehicle
Control Simulators.

Training Software (TRN)

Hardware and software that are used for educational and
training purposes.

Ex: Onboard or Deliverable Training Equipment & Software,
Computer-Based Training.

Data Assessment and Processing © 42
UNCLASSIFIED

Distribution Statement A: Approved for Public Release

UNCLASSIFIED

Software Cost Estimation Metrics Manual

Table 16 Productivity Types

PT

Description

Telecommunications (TEL)

The transmission of information, e.g. voice, data, commands,
images, and video across different mediums and distances.
Primarily software systems that control or manage transmitters,
receivers and communications channels.

Ex: switches, routers, integrated circuits, multiplexing, encryption,
broadcasting, protocols, transfer modes, etc.

Software Tools (TOOL)

Software that is used for analysis, design, construction, or testing
of computer programs.

Ex: Integrated collection of tools for most development phases of
the life cycle, e.g. Rational development environment.

Test Software (TST)

Hardware & Software necessary to operate and maintain
systems and subsystems which are not consumed during the
testing phase and are not allocated to a specific phase of
testing.

Ex: Onboard or Deliverable Test Equipment & Software.

Intelligence & Information
Software (IIS)

An assembly of software applications that allows a properly
designated authority to exercise control over the
accomplishment of the mission. Humans manage a dynamic
situation and respond to user-input in real time to facilitate
coordination and cooperation.

Ex: Battle Management, Mission Control. Also, software that
manipulates, transports and stores information.

Ex: Database, Data Distribution, Information Processing, Internet,
Entertainment, Enterprise Services*, Enterprise Information**.

* Enterprise Information
(subtype of IIS)

HW & SW needed for developing functionality or software service
that are unassociated, loosely coupled units of functionality.
Examples are: Enterprise service management (monitoring, fault
management), Machine-to-machine messaging, Service
discovery, People and device discovery, Metadata discovery,
Mediation, Service security, Content discovery and delivery,
Federated search, Enterprise catalog service, Data source
integration, Enterprise content delivery network (caching
specification, distributed caching, forward staging), Session
management,, Audio & video over internet protocol, Text
collaboration (chat, instant messaging), Collaboration (white
boarding & annotation), Application broadcasting and sharing,
Virtual spaces, Identity management (people and device
discovery), User profiling and customization.

** Enterprise Information
(subtype of IIS)

HW & SW needed for assessing and tailoring COTS software
applications or modules that can be attributed to a specific
software service or bundle of services.

Examples of enterprise information systems include but not
limited to: , Enterprise resource planning, Enterprise data
warehouse, Data mart, Operational data store.

Examples of business / functional areas include but not limited to:
General ledger, Accounts payable, Revenue and accounts
receivable, Funds control and budgetary accounting, Cost
management, Financial reporting, Real property inventory and
management.

Data Assessment and Processing © 43
UNCLASSIFIED

Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

5.2.2.1 Finding the Productivity Type

It can be challenging to determine which productivity type should be used to estimate the cost
and schedule of an application (that part of the hardware-software complex which comprise a
domain). The productivity types are by design generic. By using a work breakdown structure
(WBS), the environment and domain are used to determine the productivity type.

Using the WBS from MIL-STD-881C, a mapping is created from environment to Productivity
Type (PT), Table 17. Starting with the environment, traverse the WBS to the lowest level where
the domain is represented. Each domain is associated with a Productivity Type (PT). In real-
world WBSs, the traverse from environment to PT will most likely not be the same number of
levels. However the 881C WBS provides the context for selecting the PT which should be
transferable to other WBSs.

Two examples for finding the productivity type using the 881C Aerial Vehicle Manned (AVM)
and Space Vehicle Unmanned (SVU) WBS elements are provided below. The highest level WBS
element represents the environment. In the AVM environment there are the Avionics
subsystem, Fire-Control sub-subsystem, and the sensor, navigation, air data, display, bombing
computer and safety domains. Each domain has an associated productivity type.

Table 17 Aerial Vehicle Manned to PT Example

Environment Subsystem Sub-subsystem Domains PT

Search, target, tracking sensors SCP

Self-contained navigation RTE
) Self-contained air data systems RTE

Fire Control - -
Displays, scopes, or sights RTE
o Bombing computer MP

AVM Avionics .
Safety devices RTE
Multi-function display RTE
) Control display units RTE
Data Display and Controls —;

Display processors MP
On-board mission planning TRN

For a space system, the highest level 881C WBS element is the Space Vehicle Unmanned (SVU).
The two sub-systems are Bus and Payload. The domains for Bus address controlling the vehicle.
The domains for Payload address controlling the onboard equipment. Each domain has an
associated productivity type, Table 18.

Data Assessment and Processing ¢ 44
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

Table 18 Space Vehicle Unmanned to PT Example

Environment Subsystem Domains PT
Structures & Mechanisms (SMS) VvC

Thermal Control (TCS) VvC

Electrical Power (EPS) VvC

Bus Attitude Control (ACS) VC

Propulsion VvC

Telemetry, Tracking, & Command (TT&C) RTE

Bus Flight Software VC

SvuU Thermal Control RTE
Electrical Power RTE

Pointing, Command, & Control Interface VP

Payload Antenna SCP
Payload : .

Payload Signal Electronics SCP

Optical Assembly SCP

Sensor SCP

Payload Flight Software VP

The full table is available for the MIL-STD-881C WBS Mapping to Productivity Types,
Appendix 9.5.

Data Assessment and Processing © 45
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

6 Cost Estimating Relationship Analysis

This chapter discusses using the assessed and process SRDR data to create Cost Estimating
Relationships (CER). These relationships are different for different types of software. Factors
such as application complexity, impact of loss due to reliability, autonomous modes of
operation, constraints on timing, storage and power, security requirements, and complex
interfaces influence the cost and time to develop applications. Parametric cost models have a
number of adjustable parameters that attempt to account for these factors.

6.1 Application Domain Decompaosition

Instead of developing CERs and SERs with many parameters, this chapter describes an analysis
approach based on grouping similar software applications together. These groups are called
Application Domains. Application Domains implement a combination of hardware and
software components to achieve the intended functionality. Instead of using a domain name
such as Communications, a better approach is to use a generic software Productivity Type (PT).
Also consideration needs to be given to the operating environment that the domain operates
within. Both the operating environment and PT are considered in this analysis to produce CERs.

Domain analysis of the SRDR database is presented in the next sections, and provides guidance
in developing estimates in the respective domains. Cost and schedule estimating relationships
are expressed in different forms. In this manual, they are expressed as a ratio commonly called
Productivity and as a simple math equation called a Model.

6.2 SRDR Metric Definitions

The SRDR was discussed in Chapter 4. In Chapter 5 the metrics were discussed for measuring
size, effort and schedule.

6.2.1 Software Size

The SRDR data contained a mixture of different code count types. The data in Chapter 5.1.5.1
was used to convert all counts to the logical count type.

For pre-existing code (Auto-Generated, Modified and Reused), if the adaptation parameters
were not provided with the data, the guidelines in Chapter 5.1.5.2 were used.

6.2.2 Software Development Activities and Durations

Software CERs have a breadth and a depth. The breadth is the number of lifecycle activities
covered and the depth is the type of labor counted in or across each activity. The activity data in
the SRDR is reported following the [ISO 12207] processes for software development. Table 19
shows the 12207 processes and the ones covered by SRDR data. This is the breadth of the CERs
reported in this manual.

Cost Estimating Relationship Analysis ® 46
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

Table 19 ISO/IEC 12207 Development Activities
System requirements analysis
System architectural design
Software requirements analysis
Software architectural design
Software detailed design

Software coding and testing
Software integration

Software qualification testing

System integration

Activities in SRDR
data

System quallification testing

Software installation

Software acceptance support

Table 20 shows the different labor categories in the SRDR data. Not all of the records had all of
the categories. However, the Software Engineering and Assessment categories were reported
for in each record. Table 14 in Chapter 5.1.5.3 provides a distribution of effort across these
activities.

Table 20 SRDR Labor Categories
Category SRDR Labor Categories

Engineering Management

Business Management

Software Requirements Analysis
Architecture and Detailed Design
Coding and Unit Testing

Test and Integration

Quallification Testing

Development Test Evaluation Support
Software Configuration Management
Software Quality Assurance
Configuration Audit

Development Environment Support
Tools Support

Support Documentation

Data Preparation

Process Management

Metrics

Training

IT Support / Data Center

Management

Software Engineering

Assessment

When comparing results of the CER analysis with other available CER data, it is important to
keep in mind the breadth and depth of activities covered. They should be as similar as possible.

Cost Estimating Relationship Analysis * 47
UNCLASSIFIED
Distribution Statement A: Approved for Public Release

UNCLASSIFIED
Software Cost Estimation Metrics Manual

6.3 Cost Estimating Relationships (CER)

6.3.1 Model Selection

A common issue in modeling software engineering cost data using the model form below,
EQ(15) is whether there are economies or diseconomies of scale in the data, i.e., as the software
size increases less effort is required (economy of scale) or as size increases more effort is
required (diseconomies of scale). The scaling influence is found in the exponent, B. An
estimated value for B <1.0 indicates an economy of scale. An estimated value of B > 1.0 indicates
a diseconomy of scale.

Eq 16 Effort = A x (KESLOCP)

[Banker-Kemerer 1989] provide a survey of reasons for economies and diseconomies of scale.
Their paper attributes economies of scale to:

e Software development tools that increase productivity

e Specialized personnel that are highly productive

e Fixed overhead that does not increase directly with project size thereby producing
economies of scale in larger projects

Diseconomies of scale are attributed to:

e Increasing communication paths between project team members

e Larger systems having more complex interface problems

¢ Increasing the number of people increases the chance of personality conflicts

e Overhead activities increase at a faster than linear rate as project size increases

The results of their research argue for both economies and diseconomies of scale. The
economies of scale were observed on small projects and diseconomies of scale were observed on
large projects. They present a model, Most Productive Scale Size (MPSS), which finds the break
point between small and large projects. The MPSS model is organization dependent.

Our analysis found that diseconomy of scale was difficult to detect on smaller projects (less than
50 KESLOC) and was not always absent (this may have been due to differences in where the
cost was allocated by the different data submitters). This, we believe, was due to the presence of
fixed start-up costs and management overhead activities, e.g. required